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Transformers models such as BERT, RoBERTa, and DeBERTa have revolutionized the field of Natural Language Processing

in recent years with substantial improvements in the contextual understanding of text. While political scientists have begun

adopting these models, their performance differences are not well understood, especially in cross-lingual applications. This

article introduces Transformers models, compares their performance using three different text-as-data political science
projects, and shows how to fine-tune them to fit the specific needs of the researcher. We find that RoBERTa and DeBERTa
greatly outperform BERT in certain circumstances, and that further training boosts performance in specialized text. In

cross-lingual applications, XLM-RoBERTa significantly outperforms both multilingual BERT and multilingual DeBERTa.

ne of the most abundant sources of data available to

social and political scientists today is text. The rise

of social media and open access to Twitter data partly
explain this phenomenon, as does recent progress in text digi-
tization techniques that have brought books and manuscripts to
digital life that were long hidden away in archives and libraries.
Text can help us answer substantive questions in political sci-
ence on topics as diverse as political campaigns (Hobbs and
Lajevardi 2019; McGregor 2020), political polarization and
radicalization (Medzihorsky, Littvay, and Jenne 2014), media
studies (Matalon et al. 2021), public opinion (Gonzélez-Bailén
and Paltoglou 2015), Supreme Court decisions (Strother
2017), gender and politics (Gleason 2020), and many oth-
ers. As the availability of text grows, so does the need for
computer-based text analysis techniques to supplement those
done by humans.

Recent advances in natural language processing (NLP)
have spearheaded a text-as-data revolution. In particular, the
development of a novel type of deep learning architecture,
Transformers, in 2017 has allowed language models such as
BERT, RoBERT4, and DeBERTa to understand, classify, and
artificially generate text with groundbreaking levels of con-

textual accuracy (He et al. 2020; Liu et al. 2019; Tunstall, von
Werra, and Wolf 2022). Political scientists have begun using
Transformers-based models, but there is still a need for clarity
around the performance differences across BERT, RoBERT?q,
and DeBERTa models when applied to political science texts.
This is especially true in the case of multilingual classifica-
tion problems, in which multiple models such as multilingual
BERT (mBERT), XLM-RoBERT4, and multilingual DeBERTa
(mDeBERTa) exist but there is little consensus over which one
performs best or by how much. Lastly, we illustrate how re-
searchers can fine-tune an off-the-shelf Transformers model to
apply it to specialized text. First, they can further train the
model with new unlabeled text data to suit specific tasks, thus
improving contextual understanding of specialized language.
Second, they can adapt the model to any specific application
with labeled training data. Combining both of these strate-
gies, we argue, yields substantial gains in performance.

In this article, we aim to introduce Transformers models to
a broader audience, comparing their performance in English
and multilingual models and showing how researchers can
further train them on specialized text.'! Beyond these contri-
butions, we provide detailed evidence for what we believe are
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the practical advantages of these models for political and social
scientists: (1) lower costs to generate data from text through
accurate classifiers, (2) potential for large-N analysis for oth-
erwise small-N projects, and (3) the ability to generate new
theoretical questions and empirical tests that would not be
possible without these models. We highlight their importance
through three existing political science projects that use text-
as-data for sentence or text classification.”

The culmination is three main findings that provide evi-
dence for determining which model to use based on the needs
of the researcher. First, RoOBERTa is the model that generally
offers the greater balance between performance and compu-
tational cost. It consistently outperforms BERT by what we
consider is a substantial margin. DeBERT4a, on the other hand,
has similar performance to RoBERTa but uses about twice as
much computational power. Second, creating custom-made
BERT, RoBERTa, or DeBERTa models through further train-
ing yields substantial improvements in classifier accuracy. Third,
as expected, all Transformers-based models improve on the per-
formance of other widely used machine learning approaches.
With performance gains and the fine-tuning flexibility of Trans-
formers, we believe a growing number of political science proj-
ects using text data can benefit from a big data approach.

Indeed, early work applying Transformers-based models
showcases the potential of BERT and RoBERTa in political
science. Abercrombie et al. (2019) and Abercrombie and Batista-
Navarro (2022) employ BERT to detect policy preferences (up to
34 topics) from members of Parliament using debate motions.
Similarly, Aleman, Micozzi, and Vallejo Vera (2022) use XLM-
RoBERTa to classify legislative speeches by topic. Bonikowski,
Luo, and Stuhler (2022) apply RoBERTa to identify frames in
US presidential campaigns. Since the focus of these papers is
not solely methodological, the selection of their model of choice
is unclear (and beyond their scope). Questions also remain
around what additional steps scholars could follow to further
improve the performance of their models. Our paper provides
a systematic overview of Transformers-based models and how
to apply them in different classification tasks. While not com-
prehensively, we show how these models can be fine-tuned for
various tasks, including multilingual classification. In compar-
ing the performance of the models, we detail the advantages of
using different types of models in examples familiar to social
scientists (e.g., performance and computational cost, additional

2. Our goal is in no way to assess or issue any judgments on any of these
projects but rather to highlight the alternatives that Transformers-based
models offer, especially when compared to traditional human coding ap-
proaches and other widely used NLP classification techniques.

3. We compare the performance of Transformers models with SVM
and Bi-LSTM RNNs.

training). Ultimately, we offer an approachable explanation of
Transformers models with the aim of making them more ac-
cessible to a larger number of applied researchers.

The article is structured as follows. We first briefly introduce
the Transformers family and show how it differs from earlier
NLP approaches adopted in the social sciences. We then in-
troduce our main arguments in favor of using Transformers-
based models in political and social sciences. Three existing
text-as-data projects are then used to illustrate our arguments
and show the full practical potential of BERT-based models.*
We conclude with our findings, recommendations, and links to
resources for researchers to use these models in their projects.

NLP IN THE SOCIAL SCIENCES

The field of NLP is in the midst of a major revolution. In the
past decade, scholars have gone from computing word fre-
quencies and generating broad descriptive assessments to
building deep learning systems that understand the contextual
meaning of words and sentences (see Grimmer, Roberts, and
Stewart 2022; Tunstall et al. 2022). Two factors explain the
NLP boom. First, computational power has multiplied re-
cently, providing the necessary technology for computation-
ally intensive text analysis. The second reason is the increased
availability of accurate NLP models. Companies like Google
and Facebook have invested large amounts of resources to
improve text-to-speech and translation technology to detect
and weed out (however halfheartedly) certain types of hate
speech and disinformation from their platforms. Translation
tasks have become increasingly important in an intercon-
nected world. To respond to these needs, new Transformers
text models emerged, bringing generational leaps in accuracy
and performance.

In political science, machine learning models have become
increasingly popular to tackle tasks such as supervised and
unsupervised text classification, named entity recognition,
sentiment analysis, text similarity, among others. Topic mod-
els in particular have been widely used to cluster texts into
groups without labeled training data (Catalinac 2016; Grim-
mer 2010; King, Pan, and Roberts 2013; Roberts, Stewart, and
Tingley 2016). These models have worked well with news-
paper articles and official statements from political and social
elites, but they are less accurate when the text is informal or
short (Grimmer et al. 2022). Supervised text classification (the
object of this article) uses a labeled training set to train a model
that can accurately classify unseen text in the same categories
as the training set (Barbera et al. 2021; Pan and Chen 2018).

4. We will focus solely on supervised sentence classification tasks to
make the article tractable, even though the models we introduce have
broader applications.



Event extraction from text has also begun using machine
learning approaches despite relying on dictionary approaches
for years (Beieler et al. 2016; Ward et al. 2013), and named
entity recognition has registered improvements in recent years
with the growth of libraries such as The Natural Language
Toolkit (NLTK) and spaCy.’

In supervised text classification, common machine learning
approaches include Support Vector Machines (SVM) and
Logistic Regression (LR) classifiers. These models use a bag-of-
words approach, with an off-the-shelf tokenizer like NLTK to
predict the category of a given text.® A tokenizer breaks down
sentences into tokens that the model can understand, which
are then converted into numeric vectors.” These vectors enable
the model to capture how important words are in a given text
sequence. Machine learning models then use these vectorized
representations of text to produce classification predictions
based on some outcome of interest. While simple, these models
can yield good accuracy scores in tasks for which context is not
particularly important for performance.

Improving on word vectorization, one of the first revolu-
tionary advances in NLP was Word2Vec word embeddings,
developed in 2013 by Google (Mikolov et al. 2017). Word
embeddings are mathematical representations of words in a
vector space, where vectors closer to each other represent words
that are more similar in meaning. A commonly used English-
language Word2Vec model trained on a large set of Google
News text contains 3 million word embeddings, each of which
is a numeric vector of size 1x300.® Other widely used word
embeddings are Stanford CoreNLP’s GloVe and Facebook’s
fastText embeddings (Bojanowski et al. 2017; Pennington,
Socher, and Manning, 2014).” Word2Vec and GloVe embed-
dings are often paired with recurrent neural network (RNN) and
convolutional neural network (CNN) architectures for text
classification.’” One of the most commonly used are long

5. The Natural Language Toolkit, or NLTK, is a suite of libraries used to
perform many NLP tasks. Text also must be preprocessed first, removing stop
words (“the,” “and,” and so on) and special characters for greater accuracy.

6. More recent models such as Bi-LSTMs use conditional bag-of-
words approaches that better preserve context.

7. One of the most popular strategies is NLTK’s (https://www.nltk.org),
which is often combined with “term frequency-inverse document fre-
quency,” or “TF-IDF” vectorizer, for improved performance.

8. As a result, the computational demands of using these large
Word2Vec embeddings increased exponentially. However, nowadays, they
can be handled easily by most mid- and top-end CPUs.

9. See Rodriguez and Spirling (2022) for embeddings created specifi-
cally for political science applications.

10. Neural networks are deep learning algorithms that recognize
patterns in data through different layers and nodes. Nodes process in-
formation via weights, and each layer produces a new and more accurate
representation of the input (see Albawi, Mohammed, and Al-Zawi 2017).
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short-term memory (LSTM) networks, a type of RNN that
takes in sequential input but keeps important information
from further back in the sentence that can be useful to under-
stand new words (Chang and Masterson 2020). Bidirectional
LSTM networks, or Bi-LSTMs, process sequential informa-
tion both forward and backward, further improving con-
textual understanding. We discuss these alternative models
in detail in our first application when we describe the base-
lines for comparing our main Transformers models.

The problem with these approaches, however, is that word
vectors are static, meaning that each word has a correspond-
ing fixed mathematical vector after training. In Word2Vec,
GIloVE, and fastText, the numeric vector for the word “bear” is
the same in “grizzly bear,” “teddy bear,” “bear fruit,” or “bear a
loss.” This is where the Transformers deep learning archi-
tecture innovates: It can dynamically capture the different
meaning of words based on context. In the example above, a
Transformers-based model would produce four different
word embeddings for “bear,” one for each specific use of the
word. While these approaches are computationally much more
expensive, their benefits greatly outweigh the drawbacks. We
now introduce these models and their architecture.

THE INTUITION BEHIND TRANSFORMERS
NETWORKS

NLP models based on the Transformers deep learning archi-
tecture have yielded unparalleled accuracy in sentence classi-
fication, question answering, language translation, and other
tasks. Transformers are the engines that make BERT, Ro-
BERTa, XLM-RoBERT4, and DeBERTa run."" What exactly
does the Transformers neural network architecture do to yield
these results? They generate dynamic word embeddings that
change for every word depending on the context. That is, no
word embedding for a given word will be the same across
different texts. Each embedding incorporates the word’s po-
sition in a sentence and its relationship with words that come
before and after. The embedding for the word “bear” is dif-
” “teddy bear,”
“bear fruit,” or “bear a loss.” The dynamic nature of these em-

ferent in sentences containing “grizzly bear,

beddings allows for greater contextual understanding as the
context largely determines the word embedding itself. This is
the key difference between the Transformers deep learning
architecture and other well-known deep learning architectures
such as RNNs or CNNs, which mainly use static embeddings.

To accomplish this, Transformers networks use a mecha-
nism called self-attention. This process allows the network to
take an entire text as input and process its words all at once

11. Other models, such as XLM-Net and GPT-3, also use the Trans-
formers architecture.


https://www.nltk.org
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rather than sequentially, as RNNs and previous approaches in
NLP do (Tunstall et al. 2022; Vaswani et al. 2017). However,
processing all words at once is computationally intensive, and
the Transformers architecture is complex. Let us begin by de-
scribing its encoder layers. Encoder layers are the different
layers in neural networks, including Transformers, that per-
form computations. Each encoder is identical and includes
both the self-attention mechanism and a feed-forward neural
network. Information passes from one layer to the next, be-
coming progressively simpler and more useful by reducing the
amount of information and distilling its essence until it can
produce the most accurate output for a specific application (say
a classification or translation task). Figure 1 describes how the
encoder of a Transformers model works. The input (“I love this
city”) passes through three encoder layers, starting with each
token’s initial representation or embeddings (x, through x,).
These embeddings change as they move from one layer to the
next, until the embeddings reach their final form (f; to f,). The
diagram in figure 1 shows a three-layer encoder (encoder, to
encoder), but BERT and RoBERTa base models have 12 layers.

An element within each encoder layer that helps implement
the self-attention mechanism is the attention head. Each at-
tention head uses multiple matrices to compute the mathe-
matical relationship between all words in a sentence.” In the
example of figure 1, the self-attention mechanism allows the
model to associate “this” with “city” (rather than with “T”).
Thus, the new representation of “this” (z; and eventually ; in
fig. 1) will have some information from the other words in the
batch, thus imbuing the embedding of “this” with contextual
information from all surrounding tokens. encoder, will pro-
duce one output matrix (composed of , to r,) that moves on to
the following encoder layer (encoder,) and attention head,
beginning the process again and repeating it as many times as
there are attention heads—12 in total for base BERT and
RoBERTa models (see Ravichandiran 2021 and Tunstall et al.
2022). The last encoder outputs a final representation ( f; to f,)
that can then be decoded to generate a specific outcome such as
a translation into another language or a classification into a
category (Ravichandiran 2021; Tunstall et al. 2022; Vaswani

12. More technically, each input consists of “queries” and “keys” matrices.
In the sentence “Mary likes books,” to give meaning to the word “Mary”
(query), we look at the whole sentence and find the word that is most related to
it, in this case, “likes” (key). This process happens for each word in the sen-
tence. Similarly, the self-attention mechanism will estimate the distance (dot
product) between the vector representation of every query to the already
provided vector representation of every key. Note that, while the tokens can be
the same, the representations will be different (as they they come from previous
layers). Mathematically, we obtain the dot product of K(eys) and Q(ueries)
such that Attention(Q,K, V) = softmax(QK")/+/d,)V, where d is the di-
mension of K and used as a scaling factor. See appendix F for further details.
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Figure 1. Diagram of a three-stack encoder of a Transformers model. Input text
is tokenized and given an initial embedding (vectorized representation) sim-
plified in our figure as x, through x,. The initial embeddings are transformed as
they enter the first encoder,. In it, the self-attention mechanism updates the
embeddings (z through z,), which are then passed through a feed-forward
neural network. They exit the encoder as a more accurate set of embeddings
(r, through r,). The process is repeated for all encoders in the neural network.
For example, pre-trained BERT-based models use 12 encoder layers.

et al. 2017). The more layers and attention heads, the more
precise the final representation.

As shown in figure 1, the vector representation of each token
changes as it progresses through the encoder layers of the
Transformers network (Ravichandiran 2021). For instance,
the numeric representation for “bear” will be different if it is
followed by “fruit” or if it is preceded by “teddy.” Each at-
tention head will output an increasingly accurate word em-
bedding for the word “bear” that reflects its meaning in the
sentence. In “the child loved the teddy bear because it was soft,”
the Transformers architecture will use all words in the sen-
tence and give special weight to those it thinks are related to



“bear”—“child,” “teddy,” and “soft”—to produce the appro-
priate embedding for the word “bear,” one which captures the
idea of a teddy bear rather than a grizzly bear. Since em-
beddings are numerical representations of words (vectors that
follow algebraic rules), the distance between two embeddings
is an approximation of the relation between words; for ex-
ample, vectors that are closer together are more similar than
vectors that are farther apart. For example, in the sentence
“The kid had to bear the loss of misplacing his teddy bear and
his doll,” the cosine similarity between (teddy) bear and doll
should be higher than the cosine similarity between (teddy)
bear and bear (the loss). In appendix H, we provide code and
results using RoBERTa to show that this is the case. In ap-
pendix F, we provide a more in-depth and technical discus-
sion of Transformers networks.

Lastly, note that we emphasize the difference between
Transformers models and Bi-LSTMs in terms of these dynamic
word embeddings, but key differences across these models
warrant further discussion. First, Transformers process words
all at once, using positional embeddings to understand word
order." This differs from LSTMs, which have to process tokens
sequentially. The second main difference is the self-attention
mechanism we described above, which produces contextual
word embeddings to fully understand words in context. LSTMs,
on the other hand, use static word embeddings. Bi-LSTMs can
maintain the meaning of relevant words further back or forward
(they are bidirectional) in the sequence to improve predictions,
but the embeddings do not change dynamically with context.
Because of their capacity to understand context better than
traditional LSTMs or CNNs, we expect Bi-LSTMs combined
with the most recent state-of-the-art word embeddings (GloVe)
to provide the best benchmark on which to compare Trans-
formers models.

THE TRANSFORMERS FAMILY: BERT, RoBERTa,
AND DeBERTa

Google AI's BERT and Facebook AI's RoBERTa and XLM-
RoBERTa are the encoders of a Transformers model. After
all, BERT stands for Bidirectional Encoder Representations
from Transformers."* Google’s BERT encoder consists of 12
encoder layers and 12 attention heads in its BERT-base
configuration and 24 encoder layers and 16 attention heads
in its BERT-large configuration (Ravichandiran 2021)."

13. Positional embeddings are an additional matrix where each token
is given a number to represent its position within a text.

14. RoBERTa stands for “Robustly optimized BERT approach” and
XLM-RoBERTa stands for “Cross-lingual RoOBERTa.”

15. Each layer of a BERT-based encoder outputs word vectors of
length 768, while the BERT-large model outputs word vectors of length
1,024 (the same applies to the base and large versions of RoBERTa and
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Also, note the word bidirectional in BERT, which points to
its ability to read text forwards and backwards, relating each
word to all words in a sentence.

For training, BERT and related models leverage the Trans-
formers architecture, but they also need (1) information and
a way to (2) learn from that information. Step 1 is relatively
simple, if computationally intensive. The creators of BERT
used 11,038 books from the Toronto BookCorpus and all of
English Wikipedia to train BERT—a total of 16 GB worth of
text (Devlin et al. 2018). Facebook AI's RoBERTa, on the
other hand, used the same data as BERT and added more data
from Common Crawl (CC-News), Open WebText, and a sub-
set of Common Crawl named Stories,' for a total of 160 GB
of text, or 10 times more data (Liu et al. 2019). Cross-lingual
RoBERTa, XLM-R, was trained using Wikipedia for all lan-
guages and data from Common Crawl (Conneau et al. 2019).
While it is true that models have increasingly diversified their
sources of training data, the over-reliance on Wikipedia and
web data has implications for specialized applications, as the
language from these websites does not include the types of
words and text required for high performance in specialized
tasks. Our third application below addresses this issue and
provides a solution for researchers to improve task-specific
performance.

Step 2 is a bit more complex. How do BERT and similar
models learn how words relate to each other in text? Their
method for learning is called masked language modeling
(MLM)."” MLM masks about 15% of tokens in a text corpus.
Masking means replacing the actual token with <MASK>
and then using the full power of the self-attention mechanism
from Transformers to predict the masked words. For instance,
in the sentence “I love visiting the windy city, <MASK>, the
cultural and commercial capital of the Midwest,” BERT and
RoBERTa will use the information before and after <MASK>
to predict “Chicago.” While “windy city” may provide a clue,
the fact that the city is an important Midwest metropolis is key
in predicting the word correctly. MLM takes advantage of the
two most innovative and powerful features of Transformers-
based models: bidirectionality and self-attention. To predict
“Chicago” BERT and RoBERTa use words before and after the
<MASK>, not only words before. They use all relevant infor-

» «

mation in the sentence (“city,” “windy,” “Midwest,” “metrop-

olis,” and “commercial capital”) to come up with a probability

XLM-R). Longer vectors contain a more accurate representation of a word
but also require more space and computational power.

16. Common Crawl is a repository of historical websites.

17. BERT also uses next sentence prediction as a training method,
but MLM remains the most common training method across the different
models.
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for the most likely candidate word to replace the <MASK>.
During training, BERT and similar models use MLM to predict
15% of all words. Through MLM, these models become highly
accurate at word prediction, which means that they can un-
derstand all words in a text and how these words relate to one
another. In sum, while Transformers is the neural network ar-
chitecture that produces the most accurate representations
through the self-attention mechanism, MLM allows BERT,
RoBERT?4, and other models to learn about a text."® Figure 2
provides a graphical description of MLM.

We highlight four key implications of MLM. First is its
ability to understand context well. As explained above, by mask-
ing words in text and making the model predict the masked
words, we have achieved substantial improvements in per-
formance. The second is the inductive and social biases that
emerge from using MLM. Inductive biases help Transformers
models using MLM to learn sentence structures, which can
lead to downstream performance gains (Zhang and Hashimoto
2021). However, they are also known to “encode worrying
levels of social biases,” especially around gender and race
(Kaneko and Bollegala 2022). Third is the lack of clarity that
remains around the share of words in the training data that
should be masked. The creators of Transformers models
masked 15% of words in the unlabeled training data, which
has become common practice. Others have begun to question
whether masking more words can yield better results (Wettig
et al. 2022). This naturally leads to the fourth implication,
namely, that authors require between 0.5 and 1 GB of addi-
tional, specialized unlabeled data to make noticeable perfor-
mance gains.'” We address this issue further in application 3.

Note also that BERT, RoBERTa, and XLM-RoBERTa all
need to first tokenize a sentence before they can compute an
output. That is, they need to break the text into words and
word chunks that have meaning according to the training pro-
cess. Since BERT was trained on less data than RoBERTHa, it
has 30,522 unique vocabulary elements, while RoBERTa has
50,265. The cross-lingual model XLM-RoBERT?4, on the other
hand, has the largest number of unique vocabulary elements at
250,002 (Conneau et al. 2019). These unique vocabulary
elements can handle out-of-vocabulary words by concatenat-

18. BERT models use MLM to estimate the probability distribution for
all tokens to replace the <MASK> object. Once we uncover the masked
object, BERT can estimate loss, the difference between the probability dis-
tributions for each output token and the true labels. In the next iteration,
BERT will correct its prediction accordingly. This process appears in more
that one stage of the training process. For example, during fine-tuning (ex-
plained below), we can use MLM to improve our predictions as well.

19. It could be that by masking a higher percentage of words, MLM
would perform better at predicting newly introduced vocabulary elements,
as they would be masked more often. Future research should address this
issue.

ing different word chunks.* For instance, the word “training”
would be tokenized as “train, ##ing”, with the double hashtag
indicating that “ing” is a subword token that follows the token
“train.” This approach to subword tokenization has proven to
be accurate in handling out-of-vocabulary words (Ravichan-
diran 2021; Tunstall et al. 2022).

So far we have discussed BERT, RoBERTa, and XLM-
RoBERTa but not DeBERTa. The decoding-enhanced BERT
with disentangled attention (DeBERTa) model makes two
technical innovations on BERT and RoBERTa (He et al. 2020).
One is that it separates the word’s content from its position
in a sentence and thus computes the final embedding from the
Transformers in a way that makes the representation more
accurate. The second is that it refines the final decoder layer to
achieve better fine-tuning (He et al. 2020). DeBERTa was
trained on 78 GB of data and reported improvements be-
tween 0.9 and 3.6 percentage points over RoBERTa (large)
even when using half of the training data (He et al. 2020). The
downside of DeBERTa is that it uses double the graphics pro-
cessing unit (GPU) RAM of RoBERTa (large) and over three
times that of BERT (large).”” In the Applications section, we
compare DeBERTa performance to RoBERTa and BERT to see
whether these reported performance benefits outweigh the com-
putational costs.

FINE-TUNING A TRANSFORMERS-BASED MODEL

Where Transformers-based models’ abilities shine brightest is
in their general applications, a process known as fine-tuning.
During fine-tuning, we use a pretrained Transformers-based
model and modify its final encoder layer to suit our particular
task. Thus, we can harness the great knowledge that BERT and
RoBERTa already have about words and text to produce highly

20. Transformers models use different approaches for subword token-
ization. BERT uses byte-pair encoding, which reduces words to the character
level and creates character groups based on unique vocabulary elements
according to their frequency in the training data. RoBERTa uses byte-level
pair encoding, which converts characters to bytes (the letter “b” is byte 62, for
instance) and then combines the bytes into groups also according to their
frequency in the training data. Generally speaking, if a group of characters or
bytes exists as a token in the vocabulary, it is used as a token. If not, it is
further broken down until a vocabulary token matches it. Because characters
are converted to bytes, this method is more helpful in multilingual contexts.
These methods differ from techniques such as lemmatization or stemming in
that the full word and all the information are kept in subword tokenization,
and it is up to the Transformers matrices to calculate how important each
subword token is in relation to all other tokens in the sentence.

21. We will not go into depth about the details of DeBERTa’s innova-
tions for want of space and an emphasis on clarity and applications. Please
refer to He et al. (2020) for more information.

22. This is, to the authors’” knowledge, the first article in the discipline
to report these findings on computational cost.
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Figure 2. Representation of the masked language modeling. Transformer models randomly mask 15% of tokens. After running the corpus through the

Transformers and neural-network architecture, it asks the model to predict the masked word. Transformer models then calculate loss and the required

gradient changes to optimize the model’s weights and obtain better representations.

accurate sentence classification of campaign slogans, judicial
decisions, racism on Twitter, and myriad other important polit-
ical science research applications. The following subsection
details the general procedure to fine-tune and further train
Transformers models.

In general, there are two ways to apply these models: stan-
dard fine-tuning and further training. Standard fine-tuning is
the most common application and refers to using an already
trained or off-the-shelf model like BERT and applying it to a
specific task using manually labeled training data. Say we are
using BERT and trying to classify a text as positive or negative
(sentiment). We first need a labeled training set, usually a sample
of text manually labeled “positive” or “negative.” The size nec-
essary for the training set varies, but one of the advantages of
BERT, RoBERT4, and similar models is that they can be fine-
tuned using relatively small amounts of training data.>® We then
tokenize all the labeled text using BERT’s tokenizer and divide
the training data into training and test sets.”* We set the ap-

23. No hard rule exists on the amount of labeled text per category
required to train a Transformers model, but it is ideal to have between 200
and 500 observations depending on the task. Transformers-based models
perform well with small training sets (Khan et al. 2021).

24. The training set is a subset of the training data that the model will
use to “learn” how to classify the task at hand. The model then uses the

test set to evaluate its prediction accuracy on unseen data. Common prac-

propriate model hyperparameters” and apply BERT to our
specific classification problem. We use 10-fold cross-validation
(CV) to fully evaluate the capacity of the model to generalize to
unseen data.”® Once the model has been cross-validated, we train
the final version using the full set of training data without splits
and obtain our final classified dataset.”

The second way to fine-tune a BERT—or similar—model
is through further training the model. To do so, researchers
provide additional unlabeled text data to the model to im-
prove accuracy for a specialized task. That is, we take all the

tice is to split the data into 80% train and 20% test sets in five-fold CV and
90% and 10% in 10-fold CV.

25. Learning rate, number of epochs, batch size, optimizer, and number
of warm-up steps.

26. In all our applications, we perform 10-fold CV on the full dataset on
a set of 90-10 train-test splits. We do not hold out an extra 10% or 20% of
the data for a true out-of-sample test for two reasons. First, we report the test
averages for the full CV run as our final test scores, and we do not select a
specific “best model” from the CV run. The second, and more constraining,
reason is that we do not have large amounts of data for applications 1 and 2,
and withholding data from training affects performance noticeably. We
further explain CV and how to set hyperparameters in appendix B.

27. Note the difference between the CV and final fine-tuning step. The
cross-validated performance metrics give us a measure of the model’s
performance to generalize to unseen data. The final fine-tuning step uses
the full training set without splits for training and test data and the best
model hyperparameters from CV. See appendix B for a more detailed
discussion on CV and appendix C for a step-by-step guide with Python
code snippets on how to perform standard fine-tuning.
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knowledge BERT has and add (1) new raw text data and
(2) new vocabulary elements to allow it to understand special-
ized text better. As a practical guide, the researcher must first
gain access to a BERT, RoBERT4, or DeBERTa pretrained model
that they want to train further. After that, they must add to
the model’s tokenizer a new set of unique vocabulary elements
specific to the domain of study. The choice of vocabulary
should be grounded on the researcher’s expertise on a topic.
Third, the researcher must collect, tokenize,*® and administer
new unlabeled data containing the new vocabulary elements to
the base pretrained model. The fourth step is to retrain the
model, which allows it to see the new vocabulary elements in
context and understand them better. Lastly, the model can
then be saved and applied using standard fine-tuning to build a
classifier. We provide a more detailed guide with Python code
snippets on how to further train a model in appendix E.

For example, in application 3 in the next section, we further
train a RoBERTa-large model to better recognize text that
contains the words “covid” and “coronavirus,” two terms that
did not exist in 2018 when Facebook Al trained the original
RoBERTa. We use an unlabeled set of 6,076 academic abstracts
and 4.8 million tweets and news headlines, all of which are
about Covid-19. The idea is that performance improves when
adding “covid” and “coronavirus” as new unique vocabulary
elements to the model and training it to understand what
these two new elements mean in relation to other words in
different texts. Note that further training generates a new
variant of the BERT or RoBERTa model, which can then be
used for standard fine-tuning as described above. We detail
how to further train a RoOBERTa model in application 3.

Once researchers have built and saved the final classifier,
they usually apply it to a new and unseen dataset to gen-
erate larger amounts of data. It is important, however, to be
cognizant of the potential measurement bias present in
Transformers-generated data, as it can lead to estimation
bias. We closely follow recommendations by Egami et al.
(2023), who propose a method to reduce measurement bias
in data generated through large language models. In ap-
pendix I, we provide a detailed explanation and illustration
of Egami et al.’s (2023) methodology.

In sum, by fine-tuning a Transformers-based model for our
own application, we can improve contextual understanding
and therefore task-specific performance. We can then apply the
custom-built model to unseen data to generate larger amounts
of labeled data for analysis, correcting for any potential mea-
surement biases present in the machine-labeled data. We now
illustrate the techniques described above using three differ-
ent applications relevant to political scientists.

28. Using the updated tokenizer with the new vocabulary elements.

APPLICATIONS

We use three projects within or relevant to political science to
compare the performance of BERT, RoBERTa, and DeBERTa
models in different types of text data. We selected the projects
carefully to provide a wide array of potential applications
within political science. The first project uses English text
from Twitter and produces a binary classification of civil and
incivil tweets. The second project uses text in 29 languages and
classifies it into four categories. The final project uses Covid-
related text in English and a binary classification of true and
fake news. This final application helps illustrate the advantages
of further training BERT and RoBERTa. We also provide re-
sults from two non-Transformers baseline models for reference:
(1) SVM, which uses a simpler machine learning model to clas-
sify text, and (2) a LSTM RNN, which is the non-Transformers
state of the art model in the literature. We provide further details
on these two baseline models below.

We run all of our models Python.”® We use learning rates
within the ranges suggested by the authors of RoBERTa (Liu
et al. 2019), the weighted Adam optimizer, and 10 warm-up
steps.* We use four epochs for BERT, five epochs for RoBERTa
and DeBERT?4, and six epochs for the cross-lingual models, all
with an early stopping mechanism to prevent overfitting.*' The
computational requirements for each model vary widely, and
researchers should consider the performance-cost trade-off

29. The code uses three common machine learning and deep learning
Python libraries: Transformers, Torch, and Scikit-learn. Code for these
libraries is widely available and accessible to all applied researchers. We
have also made our code available on GitHub (https://github.com/joan
timoneda/Bert_Roberta_Deberta_jop). All pretrained models used in this
article are publicly available at huggingface.co. These include BERT-large
(bert-large-uncased), RoBERTa-large (roberta-large), DeBERTa-large (deberta-
v3-large), XLM-RoBERTa (xIm-roberta-large), mDeBERTa (mdeberta-v3-base),
and mBERT (bert-base-multilingual-uncased).

30. The learning rate is the parameter that determines how quickly the
model “learns.” A low learning rate can lead to slow convergence or the model
lingering in local optima. A high learning rate can often lead to lack of con-
vergence because the model overshoots the solution. Scholars should monitor
loss and accuracy gains to ensure they pick the right learning rate to maximize
performance. Recommended learning rates are 3e-4, le-4, 5e-5, or 3e-5 for
BERT-large-uncased (our choice: 3e-5); 1e-5, 2e-5, or 3e-5 for RoBERTa-large
(our choice: 3e-5); and 5e-6, 8e—6, 59¢-6, or le-5 for DeBERTa-V3-large (our
choice: le-5). Each researcher can then move the needle up or down to fit each
specific task, testing learning rates in these ranges. For XLM-R, 5e-6 is
recommended, but again, this may vary slightly between 5e-4 and 5e-7 in most
applications. The batch size is the number of samples that will be propagated
through the network in each iteration. A size of 16 is preferred over one of
8 and will produce better performance, especially with more than two labels.
After that, a batch size of 32 makes the model run faster but does not mean-
ingfully improve results and is much more computationally demanding (in
terms of GPU RAM). Weighted Adam is an adaptive optimizer that helps
improve convergence and generalizability (see Loshchilov and Hutter 2017).

31. Training ends after the first increase in validation loss when com-
pared to training loss.


https://github.com/joantimoneda/Bert_Roberta_Deberta_jop
https://github.com/joantimoneda/Bert_Roberta_Deberta_jop
http://huggingface.co
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Table 1. Model Performance by Category (Main “Type” Variable; 10x Repeated CV Scores)

Civil Incivil Macro-Average

Model Prec. Rec. F1 SDy Prec. Rec. F1 SDp Prec. Rec. F1 SDp,
ML-SVM 787 .832 .809 .005 420 .350 379 .012 591 .604 .594 .007
Bi-LSTM-GloVe .806 .841 .820 .006 479 409 423 .009 .620 .644 .627 .007
BERT-large .828 921 872 .002 672 448 527 .021 .684 751 .700 .010
RoBERTa-large 873 915 .893 .004 716 .610 .650 .026 .763 .795 771 .014
DeBERTa-v3-large 867 906 .885 .005 .694 .598 .638 .017 752 .780 761 011
Random baseline (F1) 618

Majority baseline (F1) 743

Note. Random and majority baselines represent macro-average F1 scores.

when deciding on which model and which platform to use.”
We provide further details on the models in appendix B, in-
cluding how long each model takes to run and the maximum
number of tokens used per application (see table B.1). We also
provide the standard deviation for the F1 scores of all the CV
runs in the tables 1, 2, and 3.

Lastly, while this article and the applications that follow fo-
cus primarily on the predictive performance of Transformers
models, they are also useful for measurement. Indeed, we would
emphasize the importance of using these models to create new
and more accurate measures of complex political phenomena.
For instance, Transformers models can help us generate more
precise measures for Supreme Court Justices’ ideal points, in-
terest group interactions in Latin American parliaments, dem-
ocratic incumbents’ social media use, and a host of other phe-
nomena where text is a primary source of data. In fact, the
variables that result from these models, and which are then used
in statistical models, are often their most powerful contribution.

Incivility on Twitter

The first project studies incivility in US state legislatures (Ger-
vais and Morris 2019). The authors leveraged increased Twit-
ter activity by state legislatures (the institutions themselves
have Twitter accounts) and organized parties in state legis-
latures between 2006 and 2018, collecting all Twitter activity

32. In appendix A, we include a breakdown of the computational
requirements and costs associated with each model on table A.1. In this
article, we use Jupyter Notebooks that we run either on Google Colab (free
GPU acceleration up to 16 GB of GPU RAM) or datacrunch.io for more
demanding tasks. Table B.1 in appendix B details which computing plat-
form we use depending on the model and the number of tokens.

in this period for all 50 US state legislatures and organized
state parties. The process yielded 344,000 total tweets, and
the authors built a sample of 2,076 tweets. They used three
research assistants to code each tweet as either civil or incivil.
Examples of incivil tweets are: “.@AKIndDems Wrong. Please
stop lying to the twitterverse. Interested in the truth? Read
here- https://t.co/D2p8OZAjBl #akleg” and “@AKIndDems -
that’s not true. Don’t play fast and loose.”

The coders agreed on the labeling 75% of the time, and the
average agreement across coder pairs was 78.7%. The Kappa
score for intercoder reliability is 0.591, indicating moderate
agreement. The authors of the article decided to code as “incivil”
tweets where at least two coders agree. This led to a total of
534 incivil tweets (25.7%) and 1,542 civil tweets (74.3%) in our
final dataset, a slightly imbalanced panel for which we will report
F1 scores. The F1 score is the harmonic mean between precision
and recall scores and therefore better captures accuracy in
unbalanced panels.** The mean length for these tweets is 19.29

33. The authors set four criteria for incivil tweets: (1) name-calling, mock-
ery, sarcasm, and character assassination; (2) spin and misrepresentative exag-
geration; (3) emotionality/digital stridency; and (4) conspiracy theory.

34. This is because it considers both how well the model has identified
true positives as opposed to generating false positives (precision) and the
model’s ability to identify true positives as opposed to generating false
negatives (recall). Some models may generate a lot of true positives and
very few false positives (high precision), but they may also generate a lot of
false negatives (low recall) or vice versa. This is a larger problem in un-
balanced panels. When only 5% of observations are one, models can
produce more false negatives because the zero category dominates, leading
to low recall, but they may also have high levels of accuracy because most
observations will be classified correctly. By using the F1 score instead of
the accuracy score, we get a much more representative picture of the mod-
el’s performance.


https://t.co/D2p8OZAjBl
http://datacrunch.io
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Table 3. Model Performance on Fake News Dataset, 10x Repeated 10-fold CV

Fake True Undetermined Macro-Average

Model Prec. Rec. F1 SDy;,  Prec. Rec. F1  SDp  Prec. Rec. F1  SDp  Prec. Rec. Fl1  SDp
ML-SVM 717 749 731 .010 .701 .731 .713 .006 .743 .680 .708 .007 .720 .720 .717 .004
Bi-LSTM- GloVe 719 732 717 014 720 702 .703 .013 712692 694 013 709 717 .705 .11
BERT 805 766 .782  .004 745 806 .772 .009 748 714 .724 .003 762 767 .760 .003
BERT-Covid 857 784 815 .003 772 809 .786 .002 744 762 .749  .005 785 791 .783 .003
RoBERTa 872 778 819 .010 .753 827 .783 .009 .748 745 742 .011 .783 791 .781 .008
RoBERTa-Covid 875 .835 .851 .008 788 .840 .810 .004 784 758 .767 .005 811 816 .809 .003
DeBERTa 865 .820 .838 .007 754 832 .788 .008 798 738 .761 .006 797 806 .796 .004
DeBERTa-Covid 881 834 855 .007 772 .850 .808 .003 786 742 760 .002 809 813 .808 .001
Random baseline 44

Majority baseline .57

Note. Random and majority baselines represent macro-average F1 scores.

words, resulting in an average of 42.32 tokens per tweet using
the RoBERTa tokenizer and a maximum number of tokens of
147. We shuffle the full 2,076-tweet sample and use 10-fold CV
to test the ability of the model to generalize to unseen data. We
report the average scores from repeated (10 times) 10-fold CV
for all models in tables 1 and 2. Repeated 10-fold CV consists of
performing 10-fold CV multiple times (in our case 10 times),
yielding an average of model performance across 100 models
from three different sets of 10 folds. This approach provides a
much more accurate estimate of true out-of-sample model
performance.®

In table 1 we report our first set of tests using the ideal
“type” variable where at least two coders agree.’* We compare
the performance of BERT, RoBERTa, and DeBERTa and
provide two other non-Transformers baseline models that
have been widely used in the literature. First is a machine
learning approach using SVM with an NLTK English language

35. We use a learning rate of 1le-05 (DeBERTa) and 3e-05 (BERT and
RoBERTa), a batch size of 32, and train the models over four, five, or six
epochs. Monitoring validation loss versus training loss is a standard ap-
proach to determining whether the model is overfitting. When the vali-
dation loss exceeds the training loss, the model is trying to increase ac-
curacy on the training data at the expense of generalizability. This is
reflected in worse performance on the validation set.

36. This variable tends to produce the best performance across all models.

tokenizer and a TF-IDF vectorizer.”” NLTK is a powerful NLP
library in Python that helps us convert text into tokens that
models can understand (Loper and Bird 2002). The TF-IDF
vectorizer is a commonly used tool that penalizes common
words and gives particular importance to rare but more
meaningful words, which helps the model to understand text
better. This model shows how well machine learning models
can classify text based on advanced calculations of word fre-
quencies and word importance, but it should perform worse
than the rest of the models given its relative simplicity. The
second model is a Bi-LSTM RNN, which we pair with GloVe
word embeddings (see Chang and Masterson 2020).

The results from table 1 align with our expectations, con-
firming that Transformers models produce the most accurate
classifications for civil and incivil tweets. The F1 score for
RoBERTa’s classification of civil tweets is high at 0.893. For
incivil tweets, on the other hand, RoBERTa’s F1 score stands at
0.650 on average over 10-times repeated 10-fold CV (100 mod-
els in total). The model’s overall F1 accuracy for RoBERTa is
0.771. DeBERTa performs similarly to RoBERTa across all
models, but BERT’s performance is worse. BERT’s F1 score for

37. We apply the TF-IDF vectorizer, which weighs token frequencies
once document frequencies are also considered, to the SVM models to
maximize their performance, as they do not use word embeddings. The
TF-IDF vectorizer we use is from the scikit-learn Python library.
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incivil tweets is 0.527, a drop-off in performance of 0.123 when
compared to RoBERT®?’s 0.650. This is a statistically significant
difference considering both models’ SDs. BERT performs well
with civil tweets (F1 = 0.872), but its overall performance is
worse than RoBERTa and DeBERTa.

Compared to the baselines, all Transformers models improve
on the performance of simple machine learning and standard
neural network approaches. As expected, the Bi-LSTM model
with GloVe embeddings performs better than SVMs. Simpler
machine learning models cannot understand the linguistic
nuances in civil and incivil tweets and produce low levels of
accuracy for incivil tweets.” RoBERTa still improves on Bi-
LSTM-GloVe’s performance by 53.2% in the incivil tweets
category and 23% in overall model performance (when com-
paring F1 scores). Note that overall levels of accuracy may
appear artificially high for these two models considering that
civil tweets are easiest to classify as they represent 74.3% of the
sample. Indeed, the random accuracy for the (unbalanced)
dataset is 74.3% for zeros (civil) and 25.7% for ones (incivil).*

We therefore recommend that researchers fine-tune a
RoBERTa model to generate labeled data from a larger set of
texts. Equipped with this larger dataset with both human-
labeled and machine-labeled data, we then recommend ap-
plying the Egami et al. (2023) method in downstream statis-
tical analyses. This helps identify and correct for measurement
bias in the machine-labeled data. We provide a full example of
this method in application 3 and appendix I.

Classifying multilingual speeches

The second project we use to illustrate the advantages of
Transformers-based models of NLP is the Global Populism
Database (GPD) introduced by Hawkins et al. (2019).*> The
GPD project started in 2006 with the goal of creating a large
dataset of global populist discourse by political leaders. The
project currently contains 1,161 speeches by 234 leaders from
73 countries. The speeches are in 29 different languages,*' and
their length ranges from 18 to 20,587 words, with a mean
length of 2,449.8 words and a median length of 1,938 words.

38. The higher accuracy of SVM and LR in civil tweets is trivial. The
models default to predicting civil when they cannot distinguish between
the two because it is the category with the most tweets in the sample.

39. Random accuracy refers to the underlying probability that the
model classifies an event correctly using only the share of a given category
in the data. Random accuracy reflects only a lucky guess by the model with-
out the need for further learning.

40. The full dataset and the codebook can be found at https://dataverse
.harvard.edu/dataset.xhtml?persistentld = doi:10.7910/DVN/LFTQEZ.

41. Bulgarian, Czech, German, Greek, English, Spanish, Estonian, Finnish,
French, Hungarian, Croatian, Italian, Japanese, Lithuanian, Latvian, Mace-
donian, Dutch, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak,
Slovenian, Albanian, Swedish, Tagalog, Turkish, and Ukrainian.

The languages in the sample are diverse. Pretrained models in
high-resource languages—that is, languages with a large amount
of data available—such as English, Spanish, and German, use
around 100 GB of data. For low-resource languages, such as
Albanian, Latvian, and Tagalog, the pretrained data can be closer
to 10 GB. The lack of training data for some of these languages
poses a general challenge for XLM-RoBERTa models to ac-
curately classify text in certain languages (see Conneau et al.
2019). For us, the challenge is to fine-tune two cross-lingual
classifiers using a relatively small sample size (1,161 speeches).

GPD’s coders have generated multiple variables from the
speech data. We will focus on one of these, the type of
speech, which has four categories: international (the audi-
ence is foreign and is preferably given outside the country),
campaign (usually the opening or closing of the campaign),
ribbon cutting (given to a local audience), and famous (a
widely circulated speech that shows the leader at his or her
best).*> Classifying the type of speech helps identify the
context in which populism most frequently occurs. The
distribution of the categories is as follows: 304 speeches are
famous (26.2%), 304 are international (26.2%), 294 are rib-
bon cutting (25.3%), and 259 are campaign (22.3%). A major-
ity of speeches are over 512 words and tokens (99.6%), so
we set a maximum length of 512 for the model and select the
first 512 tokens.

There are three challenges with this dataset. First, speeches
are long (some have over 50,000 words), and Transformers-
based models are limited to 512 tokens; with 512 tokens, the
computational requirements for graphics acceleration are high.
The other problem is sample size.”” Having 843 speeches across
three or four categories leaves only between 200 and 300 speeches
per category to train the model and a lower number for the
training set after the train-test split required in 10-fold CV.

42. See also Lewis, Paul, Sean Clarke, and Caelainn Barr. 2019. “How We
Combed Leaders’ Speeches to Gauge Populist Rise.” The Guardian. https://
www.theguardian.com/world/2019/mar/06/how-we-combed-leaders-speeches
-to-gauge-populist-rise.

43. There are important implications related to the 512-token limit for
Transformers models. First, longer texts (say Supreme Court decisions)
may have multiple sections, and thus key pieces of information may be
scattered. If, say, we set a rule to use the first 512 tokens, we may miss
important information for the classifier. This is, in our view, the most
relevant drawback of the 512 limit. The authors have found in our testing
(both for this article and other independent research) that classifier per-
formance does not improve after using around 300 tokens in texts longer
than 512 tokens. This may appear counterintuitive, but in fact, the
classifiers are so accurate that it is often the case that around 300 tokens
are sufficient to comprehend the meaning of a text, and the increases in
performance after that are marginal. The exception are texts in which
information may be hidden in sections beyond the 512 limit. For those
applications, we recommend preprocessing the text to improve on the rule
for which set of tokens to select from the text.


https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LFTQEZ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LFTQEZ
https://www.theguardian.com/world/2019/mar/06/how-we-combed-leaders-speeches-to-gauge-populist-rise
https://www.theguardian.com/world/2019/mar/06/how-we-combed-leaders-speeches-to-gauge-populist-rise
https://www.theguardian.com/world/2019/mar/06/how-we-combed-leaders-speeches-to-gauge-populist-rise

Lastly, this multilingual dataset covers tokens for English,
Spanish, Japanese, Chinese, and Albanian, among many others.
Considering these challenges, the GPD data provide a strong test
for the ability of XLM-R to classify speech types accurately.

For this test, we compare the performance of XLM-R,
mBERT, and mDeBERTa. As in the first application, we pro-
vide baseline results for SVMs and Bi-LSTM with GloVe
embeddings.* Note, however, that the SVM’s tokenizer (NLTK)
and the Bi-LSTM’s word embeddings (GloVe) are not cross-
lingual, so we have first to translate all speeches into English
(we could also translate them into other languages, but En-
glish is usually the most accurate). We did this using Google
Translate, a service whose main engine is a refined and pro-
prietary mBERT model.*> We used these models the same way
we did with the English text in the first application above. We
used all speeches in their original languages for the XLM-R,
mBERT, and mDeBERTa models.*®

Table 2 shows the results. The F1 scores show that all
Transformer models substantially improve upon the perfor-
mance of SVM and Bi-LSTM, which is to be expected. Within
the Transformers family, XLM-R performance is particularly
impressive. Its F1 score for all types of speeches is much higher
than mBERT and mDeBERT4, which score similarly. The largest
difference is with famous speeches, which XLM-R classifies
8 percentage points more accurately than mDeBERTa (6.1
when compared with mBERT). This represents an 11.94% in-
crease in performance. XLM-R outperforms the SVM model by
29.3% and the Bi-LSTM by 38.9% in classifying famous
speeches. Furthermore, XLM-R outperforms mDeBERTa by
around 4.5 percentage points on average in the other three
categories. With XLM-R, two of the four speech type categories
have F1 scores over 0.839 (campaign and ribbon-cutting
speeches) and close to 0.90 (international speeches). High
precision and recall scores show that neither false positives
nor false negatives are of concern. Across all speech cate-
gories, nBERT and mDeBERTa perform better than the non-
Transformers models but noticeably worse than XLM-R. This
difference is likely because XLM-R is a larger model than
mBERT and mDeBERT4a, with more training data, tokens,

44. We use a learning rate of 5e-06, a batch size of 16, and four epochs
for XLM-R and 3e-05, 32 batch size, and four epochs for both mBERT and
mDeBERTa. We set the max length to 512 tokens per speech, the maxi-
mum we can fit into a Nvidia A100 GPU (80 GB of RAM).

45. We used Google’s API and kept the translations to a maximum of
3,000 words per speech to keep the comparison with other models fair and
costs down.

46. We do not expect the translation to be a source of bias, consid-
ering the improvements in accuracy of machine translation in recent years,
especially with English as the target language. It is an inherent weakness
of non-Transformers models that they cannot handle text in more than
one language at a time.
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and parameters, making it more accurate for cross-lingual
applications with longer texts overall."’

These results are particularly encouraging considering
the aforementioned data limitations. Even though the classes
are well-balanced (around 300 observations in each speech
type),*® there are only 1,161 speeches to train and test the
model. Moreover, the speeches are in 29 languages, some of
which are trained on much less text data than others. Com-
pounding this, we can only take the first 512 tokens from each
speech for classification due to model and GPU constraints.
However, the model performs very well, showing the true
potential of XLM-RoBERTa and other Transformers-based
cross-lingual models in text classification tasks, especially
with small training sets.

Given the results above, we recommend that researchers
fine-tune an XLM-RoBERTa model over mBERT or mDeBERTa
to generate labels in a larger dataset based on the human coded
data from the GPD. Again, once the machine-labeled data is
available, applied researchers should follow Egami et al. (2023)
to detect and correct for any measurement bias in the data
before conducting their final analyses (see application 3 and

app. ).

Detecting Covid-19 fake news

The third application focuses on detecting fake news around
the Covid-19 pandemic and shows the flexibility of Trans-
formers models and how to apply them to specific tasks
through further training. This application shows the oppor-
tunity that Transformers models hold for increasing perfor-
mance in specialized domains. While we focus on a specific
case here (Covid-19), there are many domains in which re-
searchers can greatly improve classifier performance—and
therefore generate better data—by following the steps we
outline in this section.”” We use a manually labeled dataset of
true and fake news around the Covid-19 pandemic (see Cheng
et al. 2021), an increasingly salient topic of study within po-
litical science (Calvo and Ventura 2021; Greer et al. 2021;
Timoneda and Vallejo Vera 2021). The authors of the project
gathered 7,179 news headlines and Twitter posts containing
the words “coronavirus” or “covid” between December 2019

47. Please see appendix A. For XLM-R, both xlm-roberta-large and xlm-
roberta-base, a smaller model, exist. However, for mBERT and mDeBERTa,
only base versions exist. We take the best possible model available from each
for this application to show the true power of available cross-lingual models.

48. The exact numbers are as follows: famous, 304; international, 304;
ribbon-cutting, 294; and campaign, 259.

49. For instance, researchers have used RoBERTa models to increase
performance in the classification of US Supreme Court decisions (Johnson,
Strother, and Timoneda 2024) and of racist text in Spanish (Gordillo, Timoneda,
and Vallejo Vera 2024).
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and September 2020. Through fact-checking websites, they
labeled each story as fake, true, or undetermined.” Lazer et al.
(2018) define “fake news” as “fabricated information that
mimics news media content in form but not in organizational
process or intent.” Examples of fake news from the afore-
mentioned dataset are: “Coronavirus was created in a govern-
ment lab as a bioweapon and then released on the people of
China” or “Japanese doctors advice that taking a few sips of
water every 15 mins will prevent the new coronavirus from
entering your windpipe and lungs.” We use the final dataset,
which has 3,681 fake (51.27%), 1,878 true (26.16%), and 1,620
(22.57%) undetermined news stories and tweets. The mean
length for the headlines is 21.56 words, and the longest is
143 words, resulting in an average of 29.75 tokens per sen-
tence using the RoBERTa tokenizer and a maximum number
of tokens of 160.

Data on the coronavirus pandemic provides a clear example
of the advantages of further training Transformers models.
When RoBERTa was originally trained in 2018 to 2019, Covid-
19 did not yet exist. Coronaviruses had circulated for years, but
none had resulted in a global pandemic. The word “Covid” did
not exist until February of 2020, so this case provides an in-
tuitive application for how to further train a model on highly
specialized words that we can be certain the original model was
never trained to understand. Original RoBERTa, therefore, can-
not know what Covid-19 is or how the words “coronavirus” or
“Covid” are used in context today without further training. Our
solution is to further train a new RoBERTa model with new
data containing the words “coronavirus” and “Covid” and add
those two vocabulary elements to the tokenizer. The new model
should be able to classify texts containing these two new words
more accurately than original RoBERTa.

There are four steps to further train RoBERTa and other
Transformers models. First, we add two new vocabulary
elements—“Covid” and “coronavirus”—to the RoBERTa-large
(fast) tokenizer, neither of which exists in the original. The
tokenizer now has 50,267 unique vocabulary elements, two more
than the original’s 50,265. Second, we take the pre-existing
vector representations for “virus” and “respiratory” from the
existing set of RoBERTa vocabulary elements and assign the
mean of those two word vectors to be the vector representation
for the newly created elements “Covid” and “coronavirus.”'

50. The dataset is available at https://github.com/MickeysClubhouse
/COVID-19-rumor-dataset.

51. This choice is arbitrary though based on theory. Given the nu-
merical representations of word embedding, we assume that virus +
respiratory = coronavirus. This is only a starting point for the new vo-
cabulary elements. Once we further train the model, the embeddings for
coronavirus and Covid will adjust and become more accurate repre-
sentations of their meaning.

Third, to make these initial representations more accurate, we
feed a set of unlabeled texts containing the words “Covid” and
“coronavirus” in English to the model and train it again. In our
case, we used 6,079 abstracts from academic articles on the
topic of Covid-19 and the coronavirus pandemic. We also added
1 GB of short news headlines around the Covid-19 pandemic
obtained from Twitter. The format and nature of these texts
closely matches the type of training text data that we use to build
the classifier (tweets). Note that none of the unlabeled tweets
used for further training are present in the labeled training data.
The amount of text needed to improve task-specific perfor-
mance varies, but usually the more text, the more accurate the
model becomes. Fourth, we save the new model and apply it to
our classification task—building a classifier using labeled train-
ing data—in the same way we would apply original RoBERTa.”

We repeat this process for each of the Transformers models
we compare in this article, BERT, RoBERTa, and DeBERTa,
using each model’s own tokenizer.”> We compare the perfor-
mance of the resulting three new models (BERT-Covid, RoBERTa-
Covid, and DeBERTa-Covid) with that of the original models.
We use a 10-times repeated 10-fold CV.>*

The results are in table 3. We compare the performance of
BERT, RoBERTa, and DeBERTa with (1) their respective
Covid-specific further-trained models and (2) the same two
baseline models from tables 1 and 2—SVMs and Bi-LSTM.
The results confirm our expectations. First, all of the Trans-
formers models outperform the baseline models significantly.
BERT, the lowest performing Transformer model of the
three, still outperforms SVM and Bi-LSTM-GloVe by 7% and
9.1%, respectively, in terms of their F1 scores when classifying
fake news. Similar gains apply to true and undetermined
news. RoBERTa and DeBERTa show even more significant
gains in performance when compared to the two baselines.

The most relevant results are in comparing original BERT,
RoBERT4a, and DeBERTa with their respective Covid-trained
models. All the Covid-trained models show substantively signi-
ficant gains in performance when comparing F1 scores, espe-
cially when classifying fake news. First, BERT-Covid improves
upon BERT by 4.22% in fake news, 1.81% in true news, and
3.45% in undetermined. RoBERTa-Covid bests RoBERTa by
3.91% in fake news, 3.45% in true news, and 3.37% in unde-
termined. Lastly, DeBERTa-Covid outperforms DeBERTa by
2.03% in fake news and by 2.56% in true news, and there is no

52. See appendix E for a more detailed step-by-step guide on how to
further train a Transformers model with Python code snippets.

53. From the Transformers library, we use BertTokenizer for bert-large-
uncased, RobertaTokenizerFast for roberta-large, and DebertaV2TokenizerFast
for deberta—v3-large.

54. We use the same hyperparameters to train the original and new
models to ensure the results are comparable.
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improvement in undetermined news. Therefore, all further-
trained models increase performance in classifying fake news
around the Covid-19 pandemic by a range between 2.03% and
4.22%. RoBERTa sees the largest improvement in classifying
true stories with 3.45%.

These results are especially significant in substantive terms
for two reasons. First is that we trained the Transformers
models with only 6,079 abstracts of academic articles on the
topic of Covid-19, or 8.4 MB of text. We then added 4.8 mil-
lion short news headlines in English that total 978 MB of
text. Original RoBERT4, on the other hand, was trained on
160 GB of text. Our unlabeled data represent a fraction of the
total training data in terms of quantity, and yet there are no-
ticeable increases in overall performance. It is reasonable to
expect larger performance gains with more training data or if
we retrained the model from scratch. Second, our results are
averages of 100 different models across 10 different sets
of 10-fold CV. We can be certain that if we were to draw more
model samples, the differences between the original and the
Covid models would remain.

In all, these results show the potential that further training
models holds for increasing performance in specialized ap-
plications. Differences across models are significant, especially
considering that original BERT, RoBERTa, and DeBERTa al-
ready perform well in this application. Note, however, that
performance will vary across domains, and researchers should
decide whether further training the model is warranted for
their specific application. We argue that doing so is important
in domains where text requires complex contextual under-
standing or uses highly specialized language. Gordillo, Timo-
neda, and Vallejo Vera (2024), for instance, find that further
training an XLM-RoBERTa model improved classifier perfor-
mance by 8%. In other situations, in which researchers deem the
performance of the original Transformers models to be suffi-
cient, continuing without additional training can be an optimal
choice.

In light of these results, our recommendation in this ap-
plication is to fine-tune a RoBERTa model, further training it
with unlabeled Covid-related data. To illustrate how to incor-
porate machine-labeled data in downstream statistical anal-
yses, we provide an example by analyzing the effect of the
length of a tweet in words on whether the content is fake news.
We draw a random set of 3,000 news tweets around the
coronavirus pandemic from the CoAID dataset by Cuiand Lee
(2020), who code each tweet as fake or true. These tweets are
neither in the unlabeled dataset for further training nor in the
final labeled dataset for standard fine-tuning. A total of 1,500
tweets are used as human-coded, gold-standard data. Another
set of 1,500 are used as unlabeled data, and we apply our
RoBERTa-Covid model to predict the labels. The final de-
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pendent variable is whether a tweet is fake news or not. The
independent variable is tweet length. Further details of these
tests as well as the complete set of results are in appendix I. The
code is available from GitHub (omitted).”® We find that there
can be substantial discrepancies in model coefficients when
using gold-standard or machine-coded labels, which is indic-
ative of measurement bias. Applying Egami et al.’s (2023) test
significantly alleviates measurement bias, and we recommend
that scholars incorporate it into their workflow in downstream
analyses using labels produced with fine-tuned Transformers
models.

LIMITATIONS

Despite the substantial gains in performance and the flexibility
of Transformers models, they have limitations. First, perfor-
mance gains depend on setting the right hyperparameters for
each application. This requires the researcher to perform var-
ious CV test runs to determine the learning rate that maximizes
performance, minimizing both underfitting and overfitting.*
Second, these models will most often be used to create cate-
gorical variables for downstream analyses. Since there is un-
certainty and error around the Transformers model’s classified
labels, this error will then bleed into the analyses. We recom-
mend following Egami et al.’s (2023) method to detect and
correct for measurement bias in downstream statistical analy-
sis. That said, any coding procedure will suffer from some form
of coding error. Hence, researchers should focus on training
models that produce the highest levels of accuracy for the
categories that will then be used in their analyses. It is especially
important to report variation across CV runs to understand the
extent of the uncertainty around model results.

Third, the labeled training data in the final standard fine-
tuning step that produces the classifier needs to be balanced for
best performance. This may run counter to the balance of the
categories in the real world, where some categories may be rare
events but require a larger share of the training data for the
model to operate correctly.”” Fourth, NLP models are known to

55. The original Egami et al. (2023) code is available at osf.io/gjt87/2view
_only =81755cdf147f452a94297973eb83d85d.

56. Usually, a model overfits when the training loss is much smaller
than the test loss. This means the model learns patterns in the training
data too closely, thus minimizing training loss; however, those patterns
may not exist in the test data, and therefore the model does not generalize
well. Conversely, a model underfits when the training loss is larger than
the test loss, meaning there is still more that the model can learn from the
training data to generalize better to unseen data. CV helps find the right
training balance that avoids both underfitting and overfitting.

57. Note that the training data need not be perfectly balanced. Rather,
researchers need to keep the ratio between 2:1 and 3:1. With larger ration,
the model will tend to overpredict the more frequent category to the
detriment of the more infrequent one.
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suffer from multimodality, which occurs when the “function we
are trying to optimize is not globally concave” (Roberts et al.
2016, 2). Transformers-based models might suffer from multi-
modality too, hence the importance of repeated CV as a strategy
to validate model results. Our results show that performance is
quite consistent across different CV runs. Researchers must set
hyperparameters carefully, using CV to determine the best set
for their particular application (see app. B).”

Lastly, the performance gains from Transformers models
come at a computational cost. The sheer amount of parallel
calculations involved in the self-attention mechanism requires
one or multiple GPUs, which have thousands of small cores
and can perform all these calculations orders of magnitude
faster than CPUs.” For smaller ROBERTa models, scholars can
use Google Colab to run our sample code. Alternatively, they
can access other cloud-based solutions with top-end GPUs,
whose cost is now small and accessible.*

CONCLUSION

This article introduces Transformers-based classification mod-
els for English and multilingual text. We compare the per-
formance of BERT, RoBERT4, and DeBERTa with other cur-
rent state-of-the-art models used in political science and find
multiple advantages. First, their capacity to understand con-
text is greater than non-Transformers-based models. Under-
standing context increases model performance when gener-
alizing to unseen data. We find that RoBERTa and DeBERTa
generally perform much better than BERT. Second, the mul-
tilingual variants of different Transformers models, in partic-
ular XLM-R, perform exceptionally well when the training
data is in multiple languages. Multilingual availability is im-
portant in comparative politics and international relations, espe-
cially with low-resource languages.” Third, Transformers models

58. In appendix B, we document the hyperparameters used to train
our cases as reference for readers.

59. We understand that there is unequal access to computational
resources in academia. While the costs of using Transformers-based mod-
els are not prohibitive (see app. A), they still pose a major obstacle to their use
for research. Future work should aim to democratize these resources’ use by
lowering their cost.

60. See appendix D for details on available cloud-based solutions.

61. Transformers models allow political science researchers to over-
come structural limitations of NLP when analyzing corpora of low-
resource language—that is, languages lacking large monolingual or par-
allel corpora or manually crafted linguistic resources sufficient for building
statistical NLP applications (Magueresse, Carles, and Heetderks 2020).
The multilingual capabilities of models like mBERT and XLM-RoBERTa
reduce the cost researchers have to incur in, for example, building new
dictionaries or training Word2Vec-type embeddings.

are flexible and can be further trained to fit a specific task, allow-
ing researchers to “customize” a model to increase performance.

As stated above, the aim of this article is to compare the
performance of recently developed Transformers models and
highlight the versatility of these methods in social science re-
search.”” Furthermore, there are other practical benefits of
using Transformers models. Given the model’s overall im-
provements in out-of-sample accuracy, scholars can use them
more consistently to turn their projects into big data projects,
using manually labeled data as training data instead of as the
full sample. This benefit is especially relevant with text data,
which is often so abundant that the real limitations researchers
face are related to resources and scaling costs. Transformers
models—as other machine learning models—also allow research-
ers to understand their data much better.

We think the advantages of Transformers models greatly
outweigh their limitations. This is especially true considering
that the models introduced in this article represent a paradigm
shift in NLP applications. They open up new avenues and
opportunities for political science research across all subfields.
Indeed, considering that text data is and will continue to be
one of the biggest sources of data in the discipline, harnessing
the power of these new models—and the ones that will inevita-
bly follow—can have a transformational effect in applied po-
litical science research.
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